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Appendix A. Multilevel Modeling Approaches for Environmental Health Disparities  
 

Appendix A has been adapted from the writings of Subramanian (2003), Duncan (1996; 

1998), and Jones (1991), who have provided leadership in applying multilevel models to the field 

of social epidemiology. This Appendix was written for conceptual understanding and, therefore, 

mathematical and statistical details are minimized (for more technical discussions, see 

Bingenheimer and Raudenbush, 2004; Bryk and Raudenbush, 1992; De Leeuw and Kreft, 2001; 

Goldstein, 1995; Hox and Kreft, 1994; Singer, 1998). We use the word “context” as a generic 

description of places or areas that may be administratively defined (as in census tracts, counties, 

and states) or socially defined, as in neighborhoods and communities. The notion of context can 

also be extended to temporal contexts, as in different time periods. Throughout Appendix A we 

use a worked example of individual lead exposure to provide a conceptual modeling approach 

for: 

• Examining a single environmental exposure that may occur through multiple media 

operating at different levels simultaneously and interacting at different levels. 

• Examining multiple exposures operating at different levels simultaneously, potentially 

accumulating over time, and interacting with each other. 

• Examining exposures differentially affecting subgroups of the population and/or 

geographic areas, and/or producing synergistic outcomes.  

• Examining the fundamental role of social and economic factors and the need to account 

for all levels through which these mechanisms influence individual exposures, either 

directly or through their effect on local environments. 

In the following sections, we discuss these issues in greater detail, illustrating each with a sample 

research question in a text box.  



 

 

Composition and Context (Partitioning the Variance) 

Research Question: Are there contextual differences in individual lead 

levels between contexts, after taking into account individual 

characteristics? 

Multilevel models provide the advantage of identifying and differentiating sources of 

variation at multiple levels, thus assigning variability to the appropriate level. It is well 

established that environmental exposures vary by place. What is unclear is whether this variation 

is attributable to the composition of individuals living in that area or if these variations are 

independent place variations. Therefore, in starting to examine individuals within contexts, we 

need to identify which effects are compositional (i.e., due to the characteristics of individuals) 

and which are contextual (i.e., due to the characteristics of places). In its simplest form (see 

Figure A1), a two-level multilevel model of individuals within places would allow us to 

differentiate between contextual (geographic/place) sources of variation, compositional 

(individual) sources of variation, and the variation due to the interaction between composition 

and context. 

 

Figure A1: Two-level structure. (Source: Duncan et al., 1996) 

 



Environmental studies are typically conducted at a single level, either at the 

aggregate/ecologic level or the micro/individual level. These studies have been criticized due to 

the incorrect inference of the study results. The former relates to the well-known 

aggregate/ecologic fallacy when analyses are only done at the aggregate level and inference is 

made to the individual; the individualistic/atomistic fallacy occurs when analyses are done only 

at the individual level and inference is made to the group (Diez-Roux, 1998). But multilevel 

level models are not just about avoiding fallacies; they also can provide insight into the complex 

processes that influence health. 

Multiple Contexts at Different Levels 

Research Question: What levels are important for the study of lead 

exposure, and what is the relative importance of the different levels?  

Since multilevel models are not restricted to just two levels and potentially can be 

expanded to n levels, these models allow us to explore the importance of all relevant levels. For 

example, when the same exposure is measured at multiple levels these models allow us to 

evaluate the relative importance of the exposure at each level. Multilevel models summarize the 

variability between higher-level units, such as the variability between neighborhoods within 

counties (Rice and Jones, 1997). One may explore the variability of lead exposure at the 

neighborhood (e.g., census tract), county, and state level to ascertain which level is most 

important in contributing to the observed variation in individual lead levels (see Figure A2).  



 

Figure A2: Three-level structure. (Source: Duncan et al., 1996) 

Such an approach may also be important when examining the role of environmental 

policy and its implementation at the state, county, and local level, since states vary in their 

regulation and resource allocation for hazards such as lead exposure (Brown et al., 2001).  

Multiple Contexts at the Same Level  

Research Question: What is the relevant contribution of neighborhood 

and school levels, that may not be nested within one another but overlap, 

to lead exposure? 

An important feature of multilevel models is that the data need not be hierarchical. That 

is, contexts do not need to be neatly nested within each other. This is important as exposures 

commonly occur in contexts that are not hierarchical, but different contexts may occur at the 

same level. For example, children may be exposed to lead in the neighborhood but also within 

the school environment, and neighborhoods may not be nested within school districts. In this 

situation we find that a number of different contexts may overlap at the same level. Such 

contexts are referred to as cross-classified structures. Figure A3 illustrates this concept, with 

individuals at level 1 nested within both neighborhoods and schools at level 2.  



 

Figure A3: Multiple contexts at the same level. (Source: Duncan et al., 1996) 

This is important to identify contexts that may be having a confounding effect. For 

example, we may find that the observed variation between neighborhoods is actually variation 

between schools (Duncan et al., 1996). 

Interaction Effects 

An important application of multilevel models is that it allows us to examine how 

variables measured at one level affect associations found at another (Bryk and Raudenbush, 

1992). Multilevel models allow us to examine individual and contextual interactions as well as 

interactions between different levels of context. These interactions are of great concern for 

cumulative risk studies, as in determining whether the effects of two or more exposures are 

merely additive or synergistic. For example, will (local-level) air pollution potentiate the effects 

of (individual-level) lead exposure on childhood learning disabilities?  That is, among 

individuals with the same lead levels, is the dose response of lead amplified among those living 

in high-smog neighborhoods compared with those living in low-smog neighborhoods? 



Individual Contextual Interaction  

Research Question: What is the average association between individual 

lead exposure and neighborhood quality, and does this association differ 

for different individuals based on their poverty profile, after accounting for 

individual characteristics and the neighborhoods in which the individuals 

live? That is, are poor persons living in low quality neighborhoods at 

higher risk of lead exposure than poor persons living in high quality 

neighborhoods?  

Including an interaction between the individual and the context provides information 

about the differential effect of context across individual groups; i.e., the characteristics of 

individuals and of places interact to produce different effects on individual blood lead levels. 

Extending our current example, we may now introduce neighborhood quality and examine its 

association with individual poverty. We may observe that poor individuals may experience 

different levels of lead exposure depending on the quality of the neighborhood in which they 

live.  

Contextual and Contextual Interaction 

Research Question: What is the average association between resource 

allocation at the city level and neighborhood quality in relation to lead 

exposure, and does this association differ for neighborhoods based on 

their quality profile, after accounting for individual characteristics and the 

characteristics of the neighborhoods in which the individuals live?  

Interactions may also be examined between different levels of context. Extending our 

example to include the level of cities with neighborhoods nested within cities, we can examine 

the effect of a city level variable on different types of neighborhoods. For example, including a 



measure of resource allocation for preventing lead exposure at the city level, we may find that 

for a given amount of spending, we get better results for high quality neighborhoods compared to 

low quality neighborhoods. Such observations are important for policy development and 

resource allocation for preventing environmental exposures. 

Modeling Contexts and Individuals Over Time  

Multilevel models allow us to examine changes over time, an important aspect in 

monitoring environmental health disparities. As contexts change over time, so do the exposure 

levels in individuals. There are two possible situations depending on whether individuals are 

repeatedly measured or the context is repeatedly measured. While the use of multilevel analysis 

of individuals nested within contexts is fairly intuitive, the repeated measurement of contexts is 

less so.  

Repeated Measures of Individuals 

Research Question: While individual lead exposures may have declined 

over time, have neighborhood contextual disparities declined or 

increased, and for which population groups have the contextual 

disparities declined or increased?  

If individuals are measured repeatedly over time, as in a panel design, their 

measurements can be described as being nested within each individual. For example, we may 

monitor lead levels of a group of individuals over time, so we would have each lead level for 

each time period at level 1 nested within individuals at level 2 nested within neighborhoods at 

level 3, as seen in Figure A4.  



 

Figure A4: Repeated measures of individuals. (Source: Duncan eet al., 1996) 

The advantage of the multilevel design over conventional repeated measures analyses is 

that the number of measurements per individual, as well as the spacing between measurements, 

may vary. In this case we are examining individual change within a contextual setting (Duncan et 

al., 1996).  

Repeated Measures of Contexts 

Research Question: Which types of individuals and which types of places 

have changed over time with respect to lead exposure?  

If repeated cross-sectional surveys are conducted within a certain context, they can be 

regarded as repeatedly measuring contexts over time. This design can be described as individuals 

nested within time, nested within contexts. For example, statewide surveys that are conducted 

annually will produce individuals nested within time nested within states as shown in Figure A5. 

In this case, we can examine trends within states while controlling for individual characteristics. 



 

Figure A5: Repeated measures of contexts. (Source: Duncan et al., 1996) 

Finally, multilevel models require that the spatial autocorrelation (the similarity between 

individuals for a given variable as a function of spatial distance) be accounted for, e.g., as in 

point sources of pollution. The combination of spatial models with multilevel models is 

relatively new, but published studies that incorporate structures that describe spatial adjacency 

are already available (Burnett et al., 2001; Langford et al., 1998).  

Types of Contextual Variables Used in Multilevel Models  

While we have discussed the use of contextual variables, it is important to note that 

contextual variables can be measured and interpreted in different ways; this section introduces 

some commonly defined contextual variables. These variables are typically used to describe the 

characteristics of a group or context. 

Derived variables are contextual variables that are summarized from the characteristics of 

individuals in that context, such as median neighborhood income or the percentage of high 

school graduates in a neighborhood. Some derived variables have no individual level equivalent, 

such as inequalities in the income distribution in an area, while others, such as average 

neighborhood income, do. While derived variables may be summarized from individual 

characteristics, their effect may be independent in that, conceptually, they may be measuring a 



characteristic of the context. The term “derived variable” is used synonymously with analytic 

and aggregate variables (Diez-Roux, 1998; Diez Roux, 2002). 

Integral variables, in contrast to derived variables, do not have an individual equivalent. 

Zoning policies, racial segregation, and population density are examples of integral variables. 

Thus, integral variables often describe group properties that are distinct from properties of the 

individuals comprising these groups (Diez-Roux, 1998; Diez Roux, 2002).  

Environmental variables within the context of multilevel models have been described as 

measures of physical and chemical exposures. Environmental variables are generally not 

aggregated from individual-level variables but do have individual-level equivalents. Such 

variables are typically used as proxies for individual-level variables that may be difficult to 

measure at the individual level (Diez-Roux, 1998; Diez Roux, 2002). A common example of an 

environmental variable used as a proxy for an individual variable is the use of the ambient 

outdoor concentration of an air pollutant as a proxy for the personal exposure concentration of 

the local residents. Because (a) most people spend more than 80% of their time indoors or in 

vehicles, where pollutant concentrations can be significantly different from those outdoors, and 

(b) many people spend a substantial amount of time at locations other than their residence, the 

personal exposure concentration can be quite different from the ambient outdoor concentration in 

the vicinity of the residence. As explained in Appendix D, modeling tools and databases are 

available to estimate personal exposure concentrations. Multilevel methods advocate measuring 

the exposure at both the level of the residence and the level of the individual. 

This Appendix has provided a brief overview of multilevel models. While multilevel 

models can provide an important tool to improve our understanding of environmental exposure 



and its relationship to socioeconomic position, the primary research needs to be theoretically 

justifiable, and model complexity needs to be balanced with functional applications.  

 



 
Appendix B: Place and Social Theory  

 

Many theoretical frameworks exist for examining the roles of social and physical 

environments in racial/ethnic and socioeconomic health disparities. These frameworks vary in 

name, disciplinary origin, and emphasis, but they share some common themes.  

Several theoretical frameworks for understanding environmental health disparities have 

recently been proposed. Gee and Payne-Sturges (2004) build upon the exposure-disease 

paradigm in suggesting that psychosocial stress is the key component that explains the greater 

susceptibility of disadvantaged populations to environmental hazards. Calling it the stress-

exposure disease framework, they hypothesize that residential segregation is the reason that 

“race” is important, incorporate a multilevel perspective, and argue that racial differences in 

stressors account for racial differences in vulnerability (Gee and Payne-Sturges, 2004). Schulz 

and Northridge (2004) have developed a framework for understanding social and environmental 

inequalities in health, drawing on earlier frameworks intended to understand racial disparities in 

health and incorporating factors in the built environment. In this framework, macro factors (e.g., 

structural determinants such as distribution of wealth) influence and are influenced by local 

factors (e.g., land use and community investment), which then influence and are influenced by 

proximate factors (e.g., health behaviors and housing conditions), which ultimately influence 

health and well-being (Schulz and Northridge, 2004). Morello-Frosch and colleagues (2002) 

suggest that income inequality and social capital at the macro levels affect the ability of local 

communities to influence environmental and social policies and, consequently, their ability to 

resist environmental health stressors such as the placement of hazardous waste facilities and 

subsequent health effects. 



SEP is a key variable in the theories and frameworks summarized above. For example, a 

recent paper by O’Neill and colleagues (2003) illustrates how social epidemiology theory can be 

incorporated in understanding disparities in air pollution: “First, groups with lower SEP may 

have higher exposure to air pollution. Second, because lower-SEP groups already experience 

compromised health status… they may be more susceptible to the health effects of air pollution. 

Third, because of the combination of greater exposure and susceptibility, these groups are likely 

to suffer greater health effects from air pollution exposure.” Racial/ethnic environmental health 

disparities can be viewed in a similar manner. 

In modern social epidemiology, prominent theoretical models include psychosocial 

theory, social production of health, and ecosocial theory and its related frameworks (Krieger et 

al., 2001). Cassel, a leader in defining psychosocial theory, proposed that psychosocial factors in 

the social environment (e.g., isolation, disorganization, and support) influence the degree to 

which some persons become more or less susceptible to disease-causing agents than others 

(Cassel, 1976). In this model, the social environment affects health indirectly by influencing 

susceptibility through changes in the neuroendocrine function. Others have proposed that 

psychosocial factors can affect health directly through allostatic load, the “wear and tear” of 

organ systems resulting from stressors (McEwen, 1998). The social production of health 

perspective, sharing much in common with the political economy of health theory, stresses 

“upstream” political and economic determinants of health, including income inequality, racial 

discrimination, neoliberal economic policies, and deregulation of corporations (Krieger et al., 

2001). In part a reaction to proponents of individual responsibility for health, the social 

production of health theory claims that class inequalities are the fundamental causes of health 

inequalities. Ecosocial theory (Krieger, 1994; Krieger et al., 2001) and its related multilevel 



frameworks incorporate multiple levels of organization (biological, social, and ecological) over 

time and space to explain changing population patterns of health (Krieger et al., 2001). The 

intent of ecosocial theory is to provide a set of guiding principles for scientific inquiry and to 

incorporate accountability (e.g., institutions), as does the social production of health theory. 

There are several common themes in the theories and frameworks discussed above. Of 

note are: (1) the concept of vulnerability, (2) multiple levels/nested hierarchies, and (3) the 

incorporation of time. “Vulnerability” is a defining concept in the field of environmental justice 

and has been categorized into at least four overlapping types: susceptibility/sensitivity (e.g., 

vulnerable populations such as children or the elderly), differential exposure (e.g., proximity to 

pollution sources), differential preparedness (e.g., low income), and differential ability to recover 

(e.g., discrimination) (Subramanian, 2004). Vulnerability is key to understanding both 

racial/ethnic and socioeconomic disparities in environmental health.  

In addition, these theories and frameworks consider multiple levels and/or nested 

hierarchies. In psychosocial theory, emphasis is placed on at least two levels, the characteristics 

of individuals and of the social environment. The social production of health theory emphasizes 

the role of economic and political structural determinants of individual-level health, focusing on 

power relations and accountability. Ecosocial theory very explicitly includes consideration of 

multiple levels corresponding to proposed causal pathways (e.g., individual and neighborhood) 

and nested hierarchies (e.g., individuals within neighborhoods within cities within states). By 

definition, theoretical frameworks for investigating environmental health disparities include 

multiple levels and characteristics of environments and of those residing within them.  

Time is an important concept for understanding environmental health disparities. Certain 

toxicants may have a greater adverse effect during certain ages, as with childhood lead poisoning 



or fetal exposure to alcohol. These developmental effects have been characterized as “windows 

of vulnerability” (Dietert et al., 2000; Luster et al., 2003). Further, hazards may flux with time, 

such as seasonality of weather and temperature (Bhattacharya et al., 2003). From a lifecourse 

perspective, the accumulation of exposures to socioeconomic disadvantage/advantage or 

socioeconomic characteristics measured at critical time periods (e.g., childhood) could have an 

important influence on later health outcomes (Galobardes et al., 2004). In addition, relationships 

between various factors at multiple levels and health are not static. Characteristics of people and 

places change over time and should be modeled accordingly.  

Recent work in social epidemiology discusses the multiple pathways through which 

socioeconomic characteristics of local places (i.e., neighborhoods) could potentially affect health 

(Macintyre et al., 2002). One is through the physical environment, including air/water/housing 

quality, affordable and nutritious food, and safe places to play/exercise. Another pathway is 

through the social environment, including processes such as social cohesion or the level of 

mutual trust among neighbors (Sampson et al., 1997); crime; acceptability of behaviors such as 

smoking, teen parenting, and adult monitoring of youth; and neighborhood reputation (Macintyre 

et al., 2002). A third pathway is through the service environment, including fire/police 

protection, access to health services, transportation, and other social services (e.g., education and 

job training/placement). Differences in local-level physical, social, and service environments 

could influence an individual’s health through behaviors such as smoking and health care use; 

psychological stressors such as fear or feeling deprived; hazardous exposures such as pollution, 

violence, or traffic; and/or opportunities for socioeconomic attainment such as availability of 

good schools and jobs. Macro-level factors, in turn, directly influence more local-level factors. 



These multiple pathways have relevance for studying and monitoring environmental health 

disparities, since they directly impact health or influence vulnerability to environmental hazards. 

Similar to studying and monitoring health disparities in general, research on 

environmental health disparities is rooted in the ethical principle of social justice or equity. Of 

primary interest is whether populations that are a priori socially disadvantaged in society (by 

nature of their SEP, race or ethnic group, gender, religious affiliation, etc.) are further—and 

unacceptably—disadvantaged with regards to their health (Braveman, 2003). Anchoring the 

study of environmental health disparities in a social justice framework has important operational 

implications. For example, in investigating disparities, a social justice framework would argue 

that the reference population (to which other groups are compared) would be the a priori most 

advantaged group (e.g., whites and the highest SEP group) rather than the population average or 

the group with the lowest risk (Braveman, 2003). Finally, a social/environmental justice 

approach implies that interventions should be aimed towards health promotion and sustainability 

rather than remediation only (Schulz and Northridge, 2004). 



Appendix C: Census Data and Census Geography  
 

Census Data 

Census data are the most commonly used source for characterizing and defining contexts. 

The US Census is generally perceived to be of high quality, given its periodic nature, 

methodological sophistication, and the relatively small sampling errors. However, one area of 

concern, especially with regard to racial health disparities, is the well-documented undercount, 

especially of minority groups. In 2000, estimates of the nationwide undercount range from 0.12 

to 1.15%, while the undercount for black males ranged from 2.1 to 7.7%. The magnitude of the 

undercount is a less serous consideration than the fact that the undercount varies differentially by 

race/ethnicity, and home ownership. Various methods for accounting for the undercount have 

been developed (Robinson, 2001; Williams et al., 2001). To overcome the limitation of census 

data being provided decennially, The American Community Survey will provide comparable 

data to that available on the US Census on an annual basis for all states, cities, counties, and 

metropolitan areas. For smaller areas such as census tracts, this survey will release estimates 

every 5 years (US Census Bureau). 

Most Commonly Used Levels 

Census blocks are the smallest unit for which the census collects and tabulates data 

representing approximately 85 individuals (see Figure C1). Visible physical (streets, railroads, 

and streams) and cultural features (e.g., schools and other buildings) define census blocks. In 

1990 the census provided tabulated block data for the entire US, recognizing the utility of these 

data for small area studies (US Department of Commerce et al., 1994). 



Figure C1: Standard Hierarchy of Census Geographic Entities 

 

Source: (US Census Bureau) 

Block groups are the next level and comprise a cluster of census blocks. Block groups 

vary in size and generally contain between 600 and 3,000 people (average 1,500). Block group 

boundaries were originally defined to create population groups that are homogenous with regard 

to social and economic characteristics (US Department of Commerce et al., 1994). Residential 

segregation patterns in the US necessitate the use of such small area units for the study of small 

areas with high minority and/or immigrant populations.  

Census tracts, the levels above block groups and composed of block groups, are small 

relatively permanent geographic areas within counties and comprise between 2,500 and 8,000 

residents (average 4,000). Census tracts follow natural boundaries and are designed to be 

homogeneous with respect to population characteristics and living conditions (US Department of 

Commerce et al., 1994). Given the relative permanence of census tract boundaries, they are used 



routinely by several Federal, state, and local agencies as administrative units for eligibility 

qualification and resource allocation (Subramanian et al., 2005).  

Zip codes have commonly been used in health research. Zip codes differ markedly in 

definition and stability from census tracts and block groups. While census tracts and block 

groups are delineated to be homogenous units as described previously, zip codes are defined by 

the US Postal Service (USPS) for efficient mail delivery and can range in size from a single 

building to large areas that cross state boundaries. To overcome these area discrepancies, the 

2000 US Census defined Zip Code Tabulation Areas (ZCTA) mapped to census blocks to replace 

zip codes. However, the current 5-digit ZCTA area may no longer correspond to the USPS 5-

digit zip code area. The use of zip codes is further complicated by extensive modifications in the 

past 10 years, the creation of new zip codes, and the deletion of existing zip codes. In addition, 

census will not be providing any linkages between zip codes and ZCTAs. From a theoretical 

standpoint the use of zip codes as a level in health research is questionable (Krieger et al., 2002).  

Counties—and the analogous parish (Louisiana), borough (e.g., Alaska), and county 

equivalent, hereafter referred to simply as county—are local levels of government, smaller than 

states but typically larger than cities or towns, with varying degrees of political and legal 

autonomy depending on the state. Counties provide a useful unit of analysis because they range 

from completely rural to metropolitan, providing a more representative geography of the US 

when compared to cities or metropolitan statistical areas. Counties incorporate a wider range of 

variability in levels of prosperity, demographics, and social and economic infrastructure. 

Additionally, educational, legal, and political institutions are generally shared within counties.  

In contrast to counties, Metropolitan Statistical Areas (MSAs) consist of a large 

urbanized county or cluster of counties that have a high degree of social and economic 



integration within that unit. MSAs are often used for programmatic purposes, including 

allocating Federal funds.  

States—and the semi-analogous territories and tribes—are the primary political division 

in the US and have a large degree of autonomy from the Federal government. This autonomy can 

challenge Federal environmental laws and regulations, as the extent of implementation is highly 

variable across states, territories, and tribes. 

Variations of Conventional Levels 

Given the appropriateness of a specific level and the data availability at that level, one 

can generate unique geographic and social contexts. For example, census block groups may be 

combined to create neighborhoods, or census tracts may be combined to create communities. 

State economic areas, economic sub-regions, and labor market areas can also be considered 

potential levels of analyses. 

Other less commonly used census geographic entities can also be considered (US 

Department of Commerce et al., 1994). State economic areas (SEAs) are either a single county or 

a group of counties within a state, defined by economic similarities. An economic sub-region is a 

group of two or more economically similar counties that cross state lines. Both the SEA and 

economic sub-region should be reconsidered as important levels between the county and state. 

Labor market areas (LMAs) are one or more counties defined by commuting-to-work patterns 

and close economic ties and represent areas within which persons can reside and work within a 

reasonable distance and change jobs without changing their place of residence (US Department 

of Commerce et al., 1994).  



Appendix D: Inhalation Exposure to Outdoor Air Pollutants 
 

Exposure assessment identifies who is exposed, as well as the level and pattern of 

exposure. Exposure assessment is based on data of the spatial and temporal patterns of air quality 

and population activity. The nature and complexity of an exposure assessment, including the 

spatial scale, is a function of the research question, characteristics of the exposure, multiple 

media sources of the pollutant, measurement methods, and policy.  

Table D1 summarizes the elements of various types of exposure assessments. Except for 

proximity analysis, which provides only qualitative exposure comparisons for disparity analysis, 

all inhalation exposure assessments require estimates of the spatial pattern of air quality 

concentrations. 

Table D1: Types of Exposure Assessments 

Metric Data Requirements Analysis 
Approach 

Exposure 
Accuracy 

Resolution/ 
Extent 

Residential proximity to 
emission sources 

(a) Emission magnitudes/locations 
(b) Residential locations 

GIS 
Low  
(qualitative 
comparisons only) 

High 

Ambient concentrations 
at residential locations 
(monitoring) 

(a) Air monitoring 
(b) Residential locations 

GIS Medium Low 

Ambient concentrations 
at residential locations 
(modeling) 

(a) Emissions magnitudes/locations 
(b) Meteorology 
(c) Residential locations 

Air 
dispersion 
modeling 

Medium Medium to 
High 

Population exposure 
(monitoring) 

(a) Personal monitoring  
(b) Residential locations 
(c) Demographics 

Statistics Low to medium High 

Population exposure 
(modeling) 

(a) Air quality—monitored or modeled 
(b) Human activity  
(c) Residential locations 

Population 
exposure 
modeling 

Medium Medium to 
High 

Individual exposure Personal monitoring — High Low 
 



Estimating Outdoor Air Pollutant Concentrations 

Outdoor air quality can be estimated in several different ways. The estimation procedure 

directly influences the level at which data are available, with monitoring data available at more 

aggregate levels such as counties and dispersion modeled data potentially available at the level of 

individual address.  

Air monitoring provides actual measured concentrations at specific locations and times. 

One of the several limitations of monitoring, however, is that it is expensive. The spatial and 

temporal extent of the monitoring network is typically small, and/or resolution typically quite 

coarse. For example, California’s South Coast Air Quality Management District recently 

completed the Multiple Air Toxics Exposure Study (MATES II). To represent air quality for the 

15 million residents of Los Angeles, Orange, San Bernardino, and Riverside Counties, 

concentrations of 32 toxic air pollutants were measured over a year for 24-hour periods every 

sixth day at 10 fixed-site locations. Air toxics monitoring studies in other regions have measured 

concentrations at even fewer locations (e.g., eight in Detroit; six in Seattle, Tampa, and 

Providence; and five in Portland, OR). 

Air dispersion modeling studies use data on emissions and meteorology to estimate air 

quality patterns according to physical principles of atmospheric physics and chemistry. These are 

generally more cost-effective than monitoring, and thus can be used to estimate air 

concentrations across larger areas and time periods with finer resolution, potentially to the 

latitude and longitude of an individual’s address. For example, the air dispersion modeling 

portion of the MATES II study estimated concentrations of air toxics for every 24-hour period 

over a year at approximately 5,000 locations. US EPA’s National Air Toxics Assessment 



(NATA) national-scale assessment estimates annual average air toxics concentrations for each of 

the more than 60,000 US census tracts.  

Estimating Exposure Concentrations 

Similarly, exposure concentrations may be measured directly with personal monitoring, 

but the cost generally precludes large study samples or monitoring periods longer than a few 

days. Exposure modeling combines air quality data (monitored or modeled) with data on 

population activity to estimate population exposure for various populations and demographic 

subgroups. Simple exposure modeling typically assumes populations are exposed to outdoor 

concentrations in the vicinity of their residences at all times, similar to the assumption of 

multilevel models where individuals in a given area share common exposures and experiences. 

However, more complex modeling uses population activity data from diary studies to account for 

people’s movements among indoor and outdoor microenvironments and geographic locations. 

The NATA national-scale assessment uses such a model to estimate exposure concentrations for 

10 age-gender groups in each US census tract. 

Characteristics of the Pollutant 

Steeper concentration gradients require finer spatial resolution (e.g., census tracts or 

block groups) to accurately represent variations in exposure concentrations. Steeper gradients are 

expected for primary pollutants (i.e., those emitted directly from sources) than for secondary 

pollutants (i.e., those formed on the atmosphere from chemical transformation of precursor 

compounds, such as tropospheric ozone). Steeper gradients are also expected for large isolated 

emission sources (e.g., large power plants and large industrial facilities) than for sources that are 



more dispersed (e.g., on-road motor vehicles). However, even for onroad motor vehicles there 

are steep concentration gradients within a couple hundred meters of a major roadway, so the 

contextual setting of the study population is also an important consideration. 

Air Quality Research Goals 

Air Quality Standards 

The determination of whether an air quality standard has been violated requires the 

estimation of the maximum concentration in the modeling domain. When an air quality study is 

focused on a single, dominant emission source (e.g., a large isolated stationary emission source 

or a heavily trafficked, isolated roadway or intersection), concentration measurements may be 

made with a dense network of monitors spread over a very limited area. However, due to their 

limited spatial scope, such studies are not likely to be useful for health disparity analysis. For 

primary pollutants (i.e., steep gradients near emission sources), air dispersion modeling for 

maximum concentration determination is often done in a tiered manner, using coarse spatial 

resolution for the first tier to find the general area of highest concentrations and then using finer 

resolution on a subset of the domain in the second tier. The modeling receptors may be arranged 

in a gridded pattern or be associated with census subdivisions (e.g., internal points of tracts, 

block groups, and blocks).  

Population Exposure Assessment 

The goal of a population exposure analysis may be to find the average exposure 

concentrations for various populations, stratified by geography and/or demography. In this case 

the choice of spatial resolution may depend on the resolution of the populations of interest, as 

well as the spatial variability of the air quality concentrations. The census tract has been 



demonstrated generally to be an appropriate level to approximate the average exposure 

concentration for constituent ethnic groups adequately. Exceptions remain for highly segregated 

areas such as Harris, TX. In such cases census blocks or block groups may be more appropriate; 

however, some desired demographic details may not be available for the more spatially resolved 

data (see Table D2 and D3 below).  

Table D2: Percentage of Ethnic Group Members that Reside in US Census Blocks in which the 
Ethnic Group Fraction Is within 0.10 of the Ethnic Group Fraction of the Tract within which it 
Resides 

 ETHNIC GROUP 

COUNTY White Hispanic Black Asian 

Los Angeles 74% 68% 67% 73% 

Orange, CA 80% 67% 96% 80% 

Brooklyn 81% 77% 85% 80% 

Manhattan 88% 81% 86% 78% 

Lorraine, OH (Cleveland) 88% 77% 83% 90% 

Harris, TX (Houston) 60% 53% 58% 73% 
 

Source: 1990 US Census data 

Table D3: Ethnic Composition of Six Selected US Counties 

  ETHNIC GROUP 

COUNTY TOTAL POP. White Hispanic Black Asian 

Los Angeles 8,863,164 41% 38% 11% 10% 

Orange, CA 2,410,556 64% 23% 2% 10% 

Brooklyn 2,300,664 40% 20% 35% 5% 

Manhattan 1,487,536 49% 26% 18% 7% 

Lorraine, OH (Cleveland) 1,412,140 72% 2% 25% 1% 

Harris, TX (Houston) 2,818,199 54% 23% 19% 4% 
 

1990 US Census data 

Alternatively, the goal of a population exposure analysis may be to find the number of 

persons exposed above a given threshold. In this case, for steep concentration gradients, a finer 



spatial resolution may be required so that spatial averaging does not mask exceedances of the 

threshold, e.g., census block rather than tract. 

Multiple Media 

Multiple sources of air pollution data are an important consideration in determining the 

appropriate levels in the analytic design. Outdoor air pollutants are emitted by a variety of 

sources: major stationary sources, small industrial sources, commercial facilities, residences, on-

road motor vehicles, and non-road mobile equipment. Residential proximity to the dominant 

source type for a given pollutant is often used as a surrogate measure for exposure to that 

pollutant when air quality concentration data are unavailable. Proximity to the source type can 

also be used as a surrogate for estimating spatial patterns of concentrations within the geographic 

subdivisions for which concentration data are available. For example, it is estimated that about 

60% of CO exposure typically results from on-road vehicle emissions. If CO concentration 

estimates were available at the tract level, variations within the tract (e.g., at the block level) 

could be estimated based on traffic patterns within the tract.  

Data Sources  

US EPA’s NATA national-scale assessment: Modeling estimates of 1996 annual average 

census tract ambient concentrations and exposure concentrations of 33 air toxics. Modeling 

estimates of 1999 annual average census tract ambient concentrations and exposure 

concentrations are scheduled to be reported in Spring 2005. 

South Coast Air Quality Management District (SCAQMD) MATESII study: Daily and 

annual average (1998-1999) air toxics monitoring (10 locations) and modeling estimates (2 km 



spacing) for California’s South Coast Air Quality Management District (Los Angeles, Orange, 

San Bernardino, and Riverside Counties). 

Portland, OR Air Toxics Assessment (PATA): Daily and annual average (1999-2000) air 

toxics monitoring (five locations) and modeling estimates (block group and tract resolution). 

SCAQMD Air Quality Management Plan: Episodic concentrations of tropospheric ozone 

(secondary), primary and secondary particles, and carbon monoxide (5 km spacing) for 

California’s South Coast Air Quality Management District (Los Angeles, Orange, San 

Bernardino, and Riverside Counties). 

Tropospheric ozone monitoring network: hourly concentration measurements at 

approximately 1,200 locations in the US. 

Particulate matter (PM) network: 24-hour average concentration measurements every 

sixth day at approximately 1,000 locations in the US for PM10 and approximately 1,000 locations 

for PM2.5. 

Policy Level 

For criteria pollutants (ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, 

particulate matter, and lead) US EPA sets air quality standards. California has also set somewhat 

different air quality standards, generally stricter than US EPA’s. States, and in some cases local 

air quality management districts, are responsible for attaining the standards within their 

jurisdictions by regulating emission sources. US EPA also promulgates emission regulations 

directly for some types of sources, such as onroad motor vehicles and some types of nonroad 

mobile equipment. US EPA also has promulgated control rules for some sources of non-criteria 

pollutants, i.e., air toxics. 



Appendix E: Ambient and Drinking Water Quality 

Characteristics of the Exposure 

Exposure to environmental agents in water can occur through a variety of pathways, 

including: dermal contact, incidental ingestion, and inhalation during swimming in rivers, lakes, 

and oceans; ingestion of fish and shellfish from contaminated waters; direct ingestion of drinking 

water; indirect ingestion of water used to process foods; and inhalation of radon and other 

contaminants entering homes from groundwater or during showering.  

The sources of the environmental agents also vary widely and include direct disposal of 

wastewaters, runoff from farms, groundwater contamination from land disposal, air emissions 

that subsequently deposit to surface waters, naturally occurring materials (e.g., geological arsenic 

and radiological deposits that leach into groundwater), and poorly constructed or maintained 

drinking water treatment and distribution systems. 

One of the more studied water pathways—direct ingestion of drinking water—can 

require a variety of spatial and other levels of analysis, depending on the populations and 

contaminants being studied, which in turn are related to the physical and regulatory framework 

of drinking water systems. Briefly, US EPA regulates public water systems (PWS’s), the US 

Food and Drug Administration (FDA) regulates bottled water, and state and local authorities—or 

no one—regulates very small or private supplies (i.e., private wells and systems that are too 

small to be considered PWS’s). Each of these sources of drinking water can have widely 

differing—or no—standards and, thus, widely differing exposures and risks.  



Water Systems 

US EPA’s definition of a public water system (PWS) states that it is a system for the 

provision to the public of water for human consumption through pipes or other constructed 

conveyances, if such a system has at least 15 service connections or regularly serves at least 25 

individuals at least 60 days out of the year. A PWS can be one of two basic types: 

• Community water systems (CWS’s) serve at least 15 service connections or 25 people 

year-round in their primary residences. Most residences, including homes, apartments, 

and condominiums in cities, small towns, and mobile home parks, are served by CWS’s. 

• Non-community water systems (NCWS’s) are public water systems that serve the public 

but do not serve the same people year-round. There are two types of NCWS’s: 

• Non-transient non-community systems (NTNCWS’s) serve at least 25 of the same 

persons over 6 months per year (e.g., schools or factories that have their own water 

source). 

• Transient non-community systems (TNCWS’s) serve at least 25 persons (but not the 

same 25) over 6 months per year (e.g., campgrounds or highway rest stops that have 

their own water source). 

While the majority of people (about 65%) obtain most of their drinking water from 

PWS’s, the rest are about evenly divided between drinking primarily bottled water and water 

from private wells (EPA, 2002; Lee et al., 2002). Furthermore, residents of rural or farm areas 

are more likely to drink private well water than municipal or bottled water. About half of 



drinking water in the US is from surface water, and half is from ground water, although often 

several sources of water are blended for a given PWS.  

The source of drinking water can have a significant effect on the type, concentration, and 

frequency of exposure to environmental agents. Given the variety of drinking water sources in 

some areas, therefore, exposure in these areas also can vary widely. In some cases, individuals in 

the same neighborhood or even the same household can experience different exposures if, for 

example, some individuals rely solely on municipal tap water (e.g., from a CWS) for their 

drinking water, some rely on bottled water, and some rely on water primarily from work (e.g., a 

NTNCWS). In a study of inter- and intra-ethnic variation in water intake among Tucson 

residents, for example, Hispanics reported differences such as much higher rates of bottled water 

consumption than did non-Hispanic whites (Williams et al., 2001). 

Rural areas, where individual households often obtain their water from private wells, can 

experience very different exposures even when the wells are fairly close to each other because of 

local effects of landfills or other sources of contamination but also because the wells might be 

drilled to different depths and, thus, drawing from different aquifers. Exposure can also vary 

within a larger CWS. For example, contamination may occur close to the tap (e.g., lead in the 

home’s faucet or pipes) rather than at the water source.  

Monitoring Research Goals 

The estimation of risk or determination of whether a drinking water standard has been 

violated usually requires the sampling and analysis of water samples, often at the PWS level 

prior to distribution to homes (i.e., before the water enters the pipes to and in the homes) and 

sometimes at the water’s source (e.g., river, aquifer). At times, sampling is conducted of 



contaminated soils or other material (e.g., landfill contents) “upstream” of the water, and then 

modeling is conducted to estimate concentrations in the ingested water. Sometimes additional 

sampling or modeling of changes in concentrations after the water leaves the PWS or other 

system is required.  

PWS’s and bottlers are required to conduct monitoring on a regular basis, though, as 

described above, the standards vary depending on the type of water supply. Also, sampling of 

water at the tap is not conducted regularly, and, thus, modeling often is needed. 

In one example of modeling of trihalomethane (THM) concentrations from multiple 

sources of water in a PWS, a statistical model was constructed using sparse routinely collected 

THM measurements to obtain quarterly estimates of mean THM concentrations. The THM 

measurements were modeled using a Bayesian hierarchical mixture model, taking into account 

heterogeneity in THM concentrations between water originating from different source types, 

quarterly variation in THM concentrations due to factors such as precursor concentrations and 

the time the water has spent in the distribution system, and uncertainty in the true value of 

undetected and rounded measurements (Whitaker et al., 2004). 

Using water monitoring or modeling data with demographic data at the census tract level 

can be difficult. For example, in a study of problems associated with collecting drinking water 

quality data for community studies, the task of evaluating water quality for each census tract was 

complicated by the fact that single census tracts were served by more than one system; each 

system usually had more than one well; and single wells had several episodes of testing for 

various contaminants (Whorton et al., 1988). This is a classic problem that the multilevel 

modeling approach described in “multiple contexts at the same level” can potentially address.  



Other monitoring focuses more on the drinking water source. For example, McLaughlin 

et al. (2001) note how ambient water (not all of which is used as a source of drinking water) in 

predominately black counties received more than twice the mass of chemicals released to water 

per square kilometer than all counties.  

Actual health outcome attributable to drinking water, as with other public health data, can 

be collected and aggregated at a variety of different levels, including individuals, census blocks, 

census tracts, counties, and health districts, depending on whether the data are obtained from 

national, state, or local disease surveillance registries or from specific surveys. Data used for Los 

Angeles County in 2000 and New York County in 2001 demonstrate the use of a variety of 

different geographic units—primarily health districts and neighborhoods, respectively—to 

demonstrate that Hispanics have higher rates of giardiasis and cryptosporidiosis, respectively, 

than other ethnic groups (Natural Resources Defense Council (NRDC), 2004). 

Monitoring data are available from a variety of sources, including the American Water 

Works Association (AWWA), US EPA’s Safe Drinking Water Information System (SDWIS), 

and state and local utilities reports. Such data usually are provided at the water supply level, 

which often equate to counties but also can equate to multiple counties or multiple units within 

counties. Thus, census tracts often combine to form congruent areas with water supply areas, yet 

a single census tract can also contain more than one water supply area or parts of areas. 
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